Solutions

BAPC 2016
Delft University of Technology

22 October 2016

A: Airport Logistics [1/3]

The solution for this problem has two parts:
1 Create a directed graph, with nodes representing points on the floor and cost-labeled edges representing the time to walk from one point to another,
2 find the shortest path in that graph.
Part 2 can be done using Dijkstra's algorithm.
Part 1 is the hard part.

A: Airport Logistics [2/3]

Doing some geometry, we find the following rules:

- The optimal path consists of straight line segments.
- When an optimal path joins a conveyor halfway (i.e. not at the begin of the conveyor), this conveyor is approached via a straight line intercepting the conveyor at a 60-degree angle.
- When an optimal path leaves a conveyor halfway (i.e. not at the end of the conveyor), the path leaves the conveyor via a straight line at a 60-degree angle with the conveyor.
- It is never necessary to leave one conveyor halfway and join the next conveyor halfway.

A: Airport Logistics [3/3]

According to these rules we connect:

- the starting point with each belt,
- each belt to the end point,
- each pair of belts,
- (finally) the nodes within each belt - going from entrance nodes to exit nodes.
This graph has $O\left(N^{2}\right)$ nodes and $O\left(N^{2}\right)$ edges in the worst case. The shortest path in the graph is then found with Dijkstra's algorithm in time $O(E * \log (E))$.

B: Battle Simulation

Problem: replace characters in given string S. When subsequent combination occurs of all 3 characters, replace those 3 with one character instead.

B: Battle Simulation

Problem: replace characters in given string S. When subsequent combination occurs of all 3 characters, replace those 3 with one character instead.

- Linearly replace all characters. Lookahead two characters to see if any combination occurs of three different characters.
- If so, ignore following two characters and continue replacing characters.
- Or... Use regular expressions instead! E.g. S.replaceAII("RBL—RLB—BRL—BLR—LRB—LBR", "C");
- String concatenation is too slow.

C: Brexit [1/2]

- Simulation with some emphasis on efficiency.
- Look locally: when removing a country Y, see if this pushes one of its partners Z over the tipping point.
- Don't perform a recount every time we consider Z :

(country being removed) (possibly tipped over?)

Complexity can be up to $\Theta\left(P^{2}\right)$, which is too slow!

C: Brexit [2/2]

■ Instead we keep count:

(country being removed) (possibly tipped over?)
■ Can be implemented breadth-first or depth-first.

- Time complexity: $\mathcal{O}(C+P)$.

D: Bridge Automation [1/2]

Task:

- No boat may wait more than 1800 seconds.
- Minimize amount of time where bridge is not fully closed.

Strategy:

- Keep bridge closed until oldest boat has waited (1800-60) seconds.
- Then open bridge, let the next k boats through, then close it.
- Repeat until all boats passed.

D: Bridge Automation [2/2]

Algorithm: dynamic programming
table $[p]=$ minimum cost needed to let the first p boats pass
table [0] $=0$
table $[p]=$
$\min _{1 \leq k \leq p}\left(\operatorname{table}[p-k]+\max \left\{T_{p}-T_{p-k+1}-1800+20,20 k\right\}+120\right)$
(Assume first $(p-k)$ boats already passed; let boat $(p-k+1)$ wait exactly 1800 seconds, then open bridge; keep bridge open until boat (p) has passed, then close bridge.)

Final answer is table [n]

E: Charles in Charge [1/2]

Problem: given a graph G, find the lowest value such that the shortest path using only edges of length at most this lowest value is at most $X \%$ longer than the shortest path without any limitations.

E: Charles in Charge [1/2]

Problem: given a graph G, find the lowest value such that the shortest path using only edges of length at most this lowest value is at most $X \%$ longer than the shortest path without any limitations.

Some notation:

- let $G=(V, E)$ be the given graph and let D be the maximum distance Charles is allowed to travel;
- for a value K, let $G_{k}=\left(V, E_{K}\right)$ be the subgraph of G using only edges of length at most K;
■ let D_{K} be the shortest distance from 1 to N in G_{K}.

E: Charles in Charge [2/2]

The problem is now formulated as follows: what is the smallest K such that the shortest path from 1 to N in G_{K} is at most D ?

E: Charles in Charge [2/2]

The problem is now formulated as follows: what is the smallest K such that the shortest path from 1 to N in G_{K} is at most D ?

We make a pair of observations:
1 Given a value K, we can calculate the shortest path from 1 to N in G_{K} using Dijkstra.
2 For any value $L \geq K$ we have $D_{L} \leq D_{K}$.

E: Charles in Charge [2/2]

The problem is now formulated as follows: what is the smallest K such that the shortest path from 1 to N in G_{K} is at most D ?

We make a pair of observations:
1 Given a value K, we can calculate the shortest path from 1 to N in G_{K} using Dijkstra.
2 For any value $L \geq K$ we have $D_{L} \leq D_{K}$.
Hence we can use binary search to find the correct value of K and solve the problem.
Runtime: $O(|E| \log (|V|) \log (|E|))$.

F: Endless Turning

- For each pair of streets calculate their intersection.
- For each street find the order in which the intersection points lie in that street, using a sort algorithm.
- Find the street on which the starting point is located.
- Now simulate the driving, keeping track of the direction in which you are traversing the streets.
- If you arrive at the first intersection for the second time, take N modulo the number of turns taken so far.
- Finish the simulation.
- Funny fact: as you walk around a polygon, in each street you will visit only two intersections: one where you enter each time and one where you leave.

G: Manhattan Positioning System [1/2]

- Task: Find a unique point at specific Manhattan distance to each beacon.
- The set of points at specific distance to one beacon is a "circle". Under Manhattan distance metric, a "circle" looks like a diamond shape.
- Task: Find the intersection of the diamond shapes of all beacons.

G: Manhattan Positioning System [2/2]

- Choose one beacon.
- Create abstract representation of its diamond shape: Set of line segments, $\{(x 1, y 1, x 2, y 2), \ldots\}$.
■ Visit all other beacons, and intersect the remaining set of line segments with the other beacon's diamond shape.
■ After processing all beacons; the set of line segments is empty (impossible) or contains exactly one point (unique solution), or contains multiple points/segments (uncertain).

H: Multiplying Digits [1/3]

Given a number n and a base b, find the least x such that the product of the digits of $x(x$ written in base $b)$ equals n. Possible digits of x are divisors of n that are less than b.
Find an ascending sequence of digits, such that

- Their product equals n,
- the sequence is as short as possible
- the sequence is lexicographically minimal.

It is tempting to put the largest possible digit at the end. But that is wrong (Sample 3):

- $b=9 ; n=216=2 * 2 * 2 * 3 * 3 * 3$.
- Choosing 8 as last digit gives $3338 \Rightarrow 1115$.
- However $666 \Rightarrow 546$ is a better (the best) solution.

H: Multiplying Digits [2/3]

Dynamic Programming, memoize the function Best:

- If n has a prime divisor $\geq b$, there is no solution.
- function Best(long k) gives the best solution.
- base case: if $(\mathrm{k}<\mathrm{b})$ Best $=\mathrm{k}$
- recursion:
for (d < BASE, d divides k)
find solutions ending with digit d, as follows:

$$
\mathrm{k} 1 \text { = k/d }
$$

b1 = Best(k1)

$$
\mathrm{sol} 1=\mathrm{b} * \mathrm{~b} 1+\mathrm{d}
$$

and return the best (least) of the soll

- The least of the sol 1 will be less than 2^{63}, but not necessarily all sol1,
- so beware of overflow!

H: Multiplying Digits [3/3]

Unfortunately, this is not fast enough. We need some of the following optimizations:

- Store the possible digits beforehand (the divisors of n below b)
- If $d * d<b$ then d will not occur in an optimal solution, except as the first digit. The left neighbour of d, say d_{1}, is at most d so the two can be replaced by $d_{1} * d<b$, making a smaller number.
- If a multiple of a digit d can be chosen as the last digit in the solution for some k, then d will not be the last digit in the optimal solution for that k.

I: Older Brother

Is q a prime power? Use a simplified factorization algorithm:

```
    bool isPrimePower(int q) {
    if (q == 1) // Corner case.
    return false;
    for (int p = 2; p * p <= q; p++) {
        if (q % p == 0) {
            // Least divisor will be prime.
            // Check if q is a power of p.
            while (q % p == 0)
                        q /= p;
                        return q == 1;
        }
    }
    // Apparently, q is prime.
    return true;
}
```

We are looking for a matching which minimizes the maximal distance between pairs. Some ways to solve this efficiently enough include:

■ Use a binary search over the maximal distance. Given a candidate maximal distance, use your favourite matching algorithm.

- Use a standard minimal matching algorithm, but look for augmenting paths with minimal highest distance, instead of minimal total distance.
- Even fast enough: start with an empty partial matching, allow new edges one by one starting with the shortest, look for a new augmenting path each time.

K: Safe Racing [1/2]

- General remark: reduce modulo 123456789 in all intermediate calculations to avoid overflow.
- Calculate

$$
D[i]=\left\{\begin{array}{l}
\text { number of ways to allocate marshalls to } \\
\text { booths } 0 \text { up to and including } i \text { given that } \\
\text { there is a marshall in booths } 0 \text { and } i
\end{array}\right.
$$

for $i=0, \ldots, L-1$, using dynamic programming in runtime $\mathcal{O}(L)$ using:

$$
D[i]=\sum_{j=\max (0, i-S)}^{i-1} D[j] .
$$

- During the process, keep track of the partial sums of the last S values. Do not recalculate them to avoid getting runtime $\mathcal{O}(S \cdot L)$, which is too big.

K: Safe Racing [2/2]

- If the first marshall is at position f and the last one at position $L-g$ (satisfying $f \geq 0, g \geq 1$ and $f+g \leq S$), then the number of ways to put marshalls in between these positions is $D[L-f-g]$.
- Hence, the answer is

$$
\sum_{f=0}^{S} \sum_{g=1}^{S-f} D[L-f-g]
$$

but naively it would take $\mathcal{O}\left(S^{2}\right)$ time to calculate this.

- Notice that each value of $h:=f+g$ occurs h times in the sum. Hence, we can also write the answer as

$$
\sum_{h=1}^{S} D[L-h] \cdot h
$$

which can be calculated in $\mathcal{O}(S)$.

L: Sticks [1/2]

- Among a sequence of numbers, are there three that form the side of a triangle?
- That is, are there $a<b<c$ with $a+b>c$?

L: Sticks [1/2]

- Among a sequence of numbers, are there three that form the side of a triangle?
- That is, are there $a<b<c$ with $a+b>c$?
- There are too many to check all triples.
- If any triple works, then a triple of consecutive lengths does.

■ Solution: sort the list of stick lengths. Check if sticks $i, i+1, i+2$ form a triangle.

L: Sticks [2/2]

- The biggest set of sticks for which no solution exists are Fibonacci numbers:

$$
1,1,2,3,5,8,11, \ldots
$$

- The largest Fibonacci number allowed $\left(<2^{60}\right)$ is F_{88}.

L: Sticks [2/2]

- The biggest set of sticks for which no solution exists are Fibonacci numbers:

$$
1,1,2,3,5,8,11, \ldots
$$

- The largest Fibonacci number allowed $\left(<2^{60}\right)$ is F_{88}.

■ Silly solution: if $n>90$, it is always possible.

- If $n \leq 90$, check all possible triples.

