
Solutions

BAPC 2016

Delft University of Technology

22 October 2016

Solutions — BAPC 2016 — 22 October 2016 1 / 23

A: Airport Logistics [1/3]

The solution for this problem has two parts:
1 Create a directed graph, with nodes representing points on the

floor and cost-labeled edges representing the time to walk
from one point to another,

2 find the shortest path in that graph.
Part 2 can be done using Dijkstra’s algorithm.
Part 1 is the hard part.

Solutions — BAPC 2016 — 22 October 2016 2 / 23

A: Airport Logistics [2/3]

Doing some geometry, we find the following rules:
The optimal path consists of straight line segments.
When an optimal path joins a conveyor halfway (i.e. not at
the begin of the conveyor), this conveyor is approached via a
straight line intercepting the conveyor at a 60-degree angle.
When an optimal path leaves a conveyor halfway (i.e. not at
the end of the conveyor), the path leaves the conveyor via a
straight line at a 60-degree angle with the conveyor.
It is never necessary to leave one conveyor halfway and join
the next conveyor halfway.

Solutions — BAPC 2016 — 22 October 2016 3 / 23

A: Airport Logistics [3/3]

According to these rules we connect:
the starting point with each belt,
each belt to the end point,
each pair of belts,
(finally) the nodes within each belt - going from entrance
nodes to exit nodes.

This graph has O(N2) nodes and O(N2) edges in the worst case.
The shortest path in the graph is then found with Dijkstra’s
algorithm in time O(E ∗ log(E)) .

Solutions — BAPC 2016 — 22 October 2016 4 / 23

B: Battle Simulation

Problem: replace characters in given string S. When subsequent
combination occurs of all 3 characters, replace those 3 with one
character instead.

Linearly replace all characters. Lookahead two characters to
see if any combination occurs of three different characters.
If so, ignore following two characters and continue replacing
characters.
Or... Use regular expressions instead! E.g.
S.replaceAll(”RBL—RLB—BRL—BLR—LRB—LBR”, ”C”);
String concatenation is too slow.

Solutions — BAPC 2016 — 22 October 2016 5 / 23

B: Battle Simulation

Problem: replace characters in given string S. When subsequent
combination occurs of all 3 characters, replace those 3 with one
character instead.

Linearly replace all characters. Lookahead two characters to
see if any combination occurs of three different characters.
If so, ignore following two characters and continue replacing
characters.
Or... Use regular expressions instead! E.g.
S.replaceAll(”RBL—RLB—BRL—BLR—LRB—LBR”, ”C”);
String concatenation is too slow.

Solutions — BAPC 2016 — 22 October 2016 5 / 23

C: Brexit [1/2]
Simulation with some emphasis on efficiency.
Look locally: when removing a country Y , see if this pushes
one of its partners Z over the tipping point.
Don’t perform a recount every time we consider Z :

1

2

3
4

5

Z

(possibly tipped over?)

Y

(country being removed)

Complexity can be up to Θ(P2), which is too slow!

Solutions — BAPC 2016 — 22 October 2016 6 / 23

C: Brexit [2/2]

Instead we keep count:

Z

(possibly tipped over?)

initially had 9 partners
still �A6 5 remaining

update a counter

Y

(country being removed)

Can be implemented breadth-first or depth-first.
Time complexity: O(C + P).

Solutions — BAPC 2016 — 22 October 2016 7 / 23

D: Bridge Automation [1/2]

Task:
No boat may wait more than 1800 seconds.
Minimize amount of time where bridge is not fully closed.

Strategy:
Keep bridge closed until oldest boat has waited (1800 - 60)
seconds.
Then open bridge, let the next k boats through, then close it.
Repeat until all boats passed.

Solutions — BAPC 2016 — 22 October 2016 8 / 23

D: Bridge Automation [2/2]

Algorithm: dynamic programming

table[p] = minimum cost needed to let the first p boats pass

table[0] = 0

table[p] =
min

1≤k≤p

(
table[p− k] + max{Tp−Tp−k+1−1800 + 20, 20k}+ 120

)
(Assume first (p − k) boats already passed;

let boat (p − k + 1) wait exactly 1800 seconds, then open bridge;
keep bridge open until boat (p) has passed, then close bridge.)

Final answer is table[n]

Solutions — BAPC 2016 — 22 October 2016 9 / 23

E: Charles in Charge [1/2]

Problem: given a graph G , find the lowest value such that the
shortest path using only edges of length at most this lowest value is
at most X% longer than the shortest path without any limitations.

Some notation:
let G = (V , E) be the given graph and let D be the maximum
distance Charles is allowed to travel;
for a value K , let Gk = (V , EK) be the subgraph of G using
only edges of length at most K ;
let DK be the shortest distance from 1 to N in GK .

Solutions — BAPC 2016 — 22 October 2016 10 / 23

E: Charles in Charge [1/2]

Problem: given a graph G , find the lowest value such that the
shortest path using only edges of length at most this lowest value is
at most X% longer than the shortest path without any limitations.

Some notation:
let G = (V , E) be the given graph and let D be the maximum
distance Charles is allowed to travel;
for a value K , let Gk = (V , EK) be the subgraph of G using
only edges of length at most K ;
let DK be the shortest distance from 1 to N in GK .

Solutions — BAPC 2016 — 22 October 2016 10 / 23

E: Charles in Charge [2/2]

The problem is now formulated as follows: what is the smallest K
such that the shortest path from 1 to N in GK is at most D?

We make a pair of observations:

1 Given a value K , we can calculate the shortest path from 1 to
N in GK using Dijkstra.

2 For any value L ≥ K we have DL ≤ DK .

Hence we can use binary search to find the correct value of K and
solve the problem.
Runtime: O(|E | log(|V |) log(|E |)).

Solutions — BAPC 2016 — 22 October 2016 11 / 23

E: Charles in Charge [2/2]

The problem is now formulated as follows: what is the smallest K
such that the shortest path from 1 to N in GK is at most D?

We make a pair of observations:

1 Given a value K , we can calculate the shortest path from 1 to
N in GK using Dijkstra.

2 For any value L ≥ K we have DL ≤ DK .

Hence we can use binary search to find the correct value of K and
solve the problem.
Runtime: O(|E | log(|V |) log(|E |)).

Solutions — BAPC 2016 — 22 October 2016 11 / 23

E: Charles in Charge [2/2]

The problem is now formulated as follows: what is the smallest K
such that the shortest path from 1 to N in GK is at most D?

We make a pair of observations:

1 Given a value K , we can calculate the shortest path from 1 to
N in GK using Dijkstra.

2 For any value L ≥ K we have DL ≤ DK .

Hence we can use binary search to find the correct value of K and
solve the problem.
Runtime: O(|E | log(|V |) log(|E |)).

Solutions — BAPC 2016 — 22 October 2016 11 / 23

F: Endless Turning

For each pair of streets calculate their intersection.
For each street find the order in which the intersection points
lie in that street, using a sort algorithm.
Find the street on which the starting point is located.
Now simulate the driving, keeping track of the direction in
which you are traversing the streets.
If you arrive at the first intersection for the second time, take
N modulo the number of turns taken so far.
Finish the simulation.
Funny fact: as you walk around a polygon, in each street you
will visit only two intersections: one where you enter each
time and one where you leave.

Solutions — BAPC 2016 — 22 October 2016 12 / 23

G: Manhattan Positioning System [1/2]
Task: Find a unique point at specific Manhattan distance to
each beacon.
The set of points at specific distance to one beacon is a
“circle”. Under Manhattan distance metric, a “circle” looks
like a diamond shape.
Task: Find the intersection of the diamond shapes of all
beacons.

Solutions — BAPC 2016 — 22 October 2016 13 / 23

G: Manhattan Positioning System [2/2]
Choose one beacon.
Create abstract representation of its diamond shape:
Set of line segments, { (x1, y1, x2, y2) , . . .}.
Visit all other beacons, and intersect the remaining set of line
segments with the other beacon’s diamond shape.
After processing all beacons; the set of line segments is empty
(impossible) or contains exactly one point (unique solution),
or contains multiple points/segments (uncertain).

Solutions — BAPC 2016 — 22 October 2016 14 / 23

H: Multiplying Digits [1/3]

Given a number n and a base b, find the least x such that the
product of the digits of x (x written in base b) equals n.
Possible digits of x are divisors of n that are less than b.
Find an ascending sequence of digits, such that

Their product equals n,
the sequence is as short as possible
the sequence is lexicographically minimal.

It is tempting to put the largest possible digit at the end. But that
is wrong (Sample 3):

b = 9; n = 216 = 2 ∗ 2 ∗ 2 ∗ 3 ∗ 3 ∗ 3.
Choosing 8 as last digit gives 3 3 3 8 ⇒ 1115.
However 6 6 6 ⇒ 546 is a better (the best) solution.

Solutions — BAPC 2016 — 22 October 2016 15 / 23

H: Multiplying Digits [2/3]
Dynamic Programming, memoize the function Best:

If n has a prime divisor ≥ b, there is no solution.
function Best(long k) gives the best solution.
base case: if (k < b) Best = k
recursion:
for (d < BASE, d divides k)

find solutions ending with digit d, as follows:
k1 = k/d
b1 = Best(k1)
sol1 = b * b1 + d

and return the best (least) of the sol1

The least of the sol1 will be less than 263, but not necessarily
all sol1,
so beware of overflow!

Solutions — BAPC 2016 — 22 October 2016 16 / 23

H: Multiplying Digits [3/3]

Unfortunately, this is not fast enough. We need some of the
following optimizations:

Store the possible digits beforehand (the divisors of n below b)
If d ∗ d < b then d will not occur in an optimal solution,
except as the first digit. The left neighbour of d , say d1, is at
most d so the two can be replaced by d1 ∗ d < b, making a
smaller number.
If a multiple of a digit d can be chosen as the last digit in the
solution for some k, then d will not be the last digit in the
optimal solution for that k.

Solutions — BAPC 2016 — 22 October 2016 17 / 23

I: Older Brother
Is q a prime power? Use a simplified factorization algorithm:

1 bool isPrimePower(int q) {
2 if (q == 1) // Corner case.
3 return false;
4 for (int p = 2; p * p <= q; p++) {
5 if (q % p == 0) {
6 // Least divisor will be prime.
7 // Check if q is a power of p.
8 while (q % p == 0)
9 q /= p;

10 return q == 1;
11 }
12 }
13 // Apparently , q is prime.
14 return true;
15 }

Solutions — BAPC 2016 — 22 October 2016 18 / 23

J: Programming Tutors

We are looking for a matching which minimizes the maximal
distance between pairs. Some ways to solve this efficiently enough
include:

Use a binary search over the maximal distance. Given a
candidate maximal distance, use your favourite matching
algorithm.
Use a standard minimal matching algorithm, but look for
augmenting paths with minimal highest distance, instead of
minimal total distance.
Even fast enough: start with an empty partial matching, allow
new edges one by one starting with the shortest, look for a
new augmenting path each time.

Solutions — BAPC 2016 — 22 October 2016 19 / 23

K: Safe Racing [1/2]
General remark: reduce modulo 123456789 in all intermediate
calculations to avoid overflow.
Calculate

D[i] =

number of ways to allocate marshalls to
booths 0 up to and including i given that
there is a marshall in booths 0 and i

for i = 0, . . . , L− 1, using dynamic programming in runtime
O(L) using:

D[i] =
i−1∑

j=max(0,i−S)
D[j].

During the process, keep track of the partial sums of the last
S values. Do not recalculate them to avoid getting runtime
O(S · L), which is too big.

Solutions — BAPC 2016 — 22 October 2016 20 / 23

K: Safe Racing [2/2]
If the first marshall is at position f and the last one at
position L− g (satisfying f ≥ 0, g ≥ 1 and f + g ≤ S), then
the number of ways to put marshalls in between these
positions is D[L− f − g].
Hence, the answer is

S∑
f =0

S−f∑
g=1

D[L− f − g],

but naively it would take O(S2) time to calculate this.
Notice that each value of h := f + g occurs h times in the
sum. Hence, we can also write the answer as

S∑
h=1

D[L− h] · h,

which can be calculated in O(S).

Solutions — BAPC 2016 — 22 October 2016 21 / 23

L: Sticks [1/2]

Among a sequence of numbers, are there three that form the
side of a triangle?
That is, are there a < b < c with a + b > c?

There are too many to check all triples.
If any triple works, then a triple of consecutive lengths does.
Solution: sort the list of stick lengths. Check if sticks
i , i + 1, i + 2 form a triangle.

Solutions — BAPC 2016 — 22 October 2016 22 / 23

L: Sticks [1/2]

Among a sequence of numbers, are there three that form the
side of a triangle?
That is, are there a < b < c with a + b > c?
There are too many to check all triples.
If any triple works, then a triple of consecutive lengths does.
Solution: sort the list of stick lengths. Check if sticks
i , i + 1, i + 2 form a triangle.

Solutions — BAPC 2016 — 22 October 2016 22 / 23

L: Sticks [2/2]

The biggest set of sticks for which no solution exists are
Fibonacci numbers:

1, 1, 2, 3, 5, 8, 11, . . .

The largest Fibonacci number allowed (< 260) is F88.

Silly solution: if n > 90, it is always possible.
If n ≤ 90, check all possible triples.

Solutions — BAPC 2016 — 22 October 2016 23 / 23

L: Sticks [2/2]

The biggest set of sticks for which no solution exists are
Fibonacci numbers:

1, 1, 2, 3, 5, 8, 11, . . .

The largest Fibonacci number allowed (< 260) is F88.
Silly solution: if n > 90, it is always possible.
If n ≤ 90, check all possible triples.

Solutions — BAPC 2016 — 22 October 2016 23 / 23

